## Colin and Coco's Daily Maths Workout

## Workout 6.1 \& 6.2

Answers


You may need to work these out on another piece of paper.


## Fraction Workout

You may need to work these out on another piece of paper.


Fraction Workout
You may need to work these out on another piece of paper.

| $3 \frac{3}{5}+2 \frac{1}{4}=5 \frac{17}{20}$ | $2 \frac{2}{5}+1 \frac{3}{4}=4 \frac{3}{20}$ | $3 \frac{2}{3}+2 \frac{3}{4}=6 \frac{5}{12}$ |
| :--- | :--- | :--- |
| $2 \frac{2}{3}+1 \frac{1}{5}=4 \frac{13}{15}$ | $2 \frac{2}{3}+2 \frac{4}{5}=5 \frac{7}{15}$ | $3 \frac{2}{3}+2 \frac{2}{7}=5 \frac{20}{21}$ |
| $3 \frac{4}{6}-1 \frac{1}{6}=2 \frac{3}{6}$ | $2 \frac{5}{6}-1 \frac{1}{3}=1 \frac{3}{6}$ | $2 \frac{5}{8}-1 \frac{3}{4}=4 \frac{7}{8}$ |
| $2 \frac{3}{5}-1 \frac{4}{5}=4 \frac{4}{5}$ | $3 \frac{1}{3}-1 \frac{2}{3}=1 \frac{2}{3}$ | $3 \frac{2}{5}-1 \frac{3}{4}=1 \frac{13}{20}$ |

You need:
1-10 cards (At the back of the pack)

## To play:

Shuffle the cards.
Deal four cards to each player.
Each player makes two proper fractions then adds them to find a total.
The player with the largest total scores a point.

To win:
The winner is the first player to score five points.

Play again, but make improper fractions this time.

Solve each calculation in at least four different ways.
(The missing numbers could have 2 digits)

## Possible

## Solution

$$
\begin{aligned}
& 2 \frac{1}{2}+2 \frac{1}{4}=4 \frac{3}{4} \\
& 2 \frac{1}{3}+2 \frac{1}{9}=4 \frac{4}{9}
\end{aligned}
$$

Find the missing digits.
Solve each calculation in several ways if possible.

$$
\begin{gathered}
3 \frac{1}{6}-1 \frac{2}{3}=1 \frac{1}{2} \quad 3 \frac{4}{5}-1 \frac{9}{10}=1 \frac{9}{1[0} \\
2 \frac{3}{6}+\frac{7}{8}=3 \frac{3}{8}
\end{gathered}
$$

Solve all calculations together using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each.

## Book Shelf Challenge

Colin is sorting his books out and is filling shelves in a very organised way. The table shows the type of books and the fraction of shelves that are filled.

| $\quad$ Books | Fraction of shelves filled |
| :--- | :---: |
| Stories about explorers | $1 \frac{2}{3}$ |
| Astronomy books | $1 \frac{3}{4}$ |
| Recipe books | $1 \frac{4}{5}$ |
| Keep Fit books | $1 \frac{5}{6}$ |

What is the difference between the fractions of shelves filled by different types of books?

What do you notice?

Investigate further:
Possible Solutions

|  |  | Difference |
| :---: | :---: | :---: |
| Stories | Astronomy | $\frac{1}{12}$ |
| Stories | Recipe | $\frac{2}{15}$ |
| Stories | Keep Fit | $\frac{1}{6}$ |
| Astronomy | Recipe | $\frac{1}{20}$ |
| Astronomy | Keep Fit | $\frac{1}{12}$ |
| Recipe | Keep Fit | $\frac{1}{30}$ |

Find two mixed numbers with different denominators that have a difference of $\frac{1}{10}$
$3 \frac{1}{2} \quad 3 \frac{4}{10}$
$\frac{1}{9} \quad 5 \frac{2}{3} \quad 5 \frac{5}{9}$
$\frac{1}{8} \quad 7 \frac{7}{8} \quad 7 \frac{3}{4}$

Colin is having a party.
He has $\frac{3}{5} \mathrm{~kg}$ of Caribou nuts in one bag and $\frac{3}{4} \mathrm{~kg}$ of Caribou nuts in another bag.
What weight of Caribou nuts does he have in total? $1 \frac{7}{20}$

Colin has taken up jogging.
He jogs $3 \frac{3}{4} \mathrm{~km}$ on Saturday and $2 \frac{2}{3} \mathrm{~km}$ on Sunday.
How far did he jog in total? $6 \frac{3}{12}$
How much further did he jog on Saturday than Sunday? $1 \frac{1}{12}$

Colin weighs $165 \frac{2}{3} \mathrm{~kg}$.
Coco weighs $\frac{5}{8} \mathrm{~kg}$.
What is the difference between their weights? $165 \frac{1}{24}$

Colin has a long journey to make.
He travels $\frac{3}{8}$ of the journey, has a break then travels $\frac{1}{3}$ of the journey.
What fraction of the journey does he have left to travel?

Coco is making a fruit punch. She pours in $1 \frac{2}{3}$ litres of Tropical juice, $\frac{4}{5}$ litres of Lemonade. How much fruit punch has Coco made so far? $2 \frac{7}{15}$ How much more Tropical Juice than lemonade does she use? $\frac{13}{15}$

Create your own problem for $2 \frac{1}{4}$ subtract $1 \frac{1}{3}$

Using the digits from today's date create all the numbers from 1-20. You can use any or all of the four operations. You must use all the digits every time.
Example: 27/3/20 (27th March)
1 ..... 11
2 12
$7 \times 2=14 \quad 3-2-0=1$
$14-1=13$13$47+2-3-2-0=4$14
5 ..... 15
$67+3-2-2-0=6$ ..... 16
7 ..... 17
8 ..... 18
$97 \times 2-3-2-0=9$ ..... 19
10 ..... 20

## Colin and Coco's Daily Maths Workout

## Workout 6.2

## Fractions, Decimals and Percentages



Fraction to decimal

$$
\begin{array}{ll}
\text { Fraction to percentage } \\
\frac{3}{4}=0.75 & \frac{1}{4}=25 \% \\
\frac{3}{5}=0.6 & \frac{2}{5}=40 \% \\
\frac{3}{10}=0.3 & \frac{7}{10}=70 \% \\
\frac{4}{5}=0.8 & \frac{3}{4}=75 \%
\end{array}
$$

Fraction, Decimal, Percentage Workout
Fraction to percentage

$$
\begin{aligned}
40 \% & =\frac{2}{5} \\
30 \% & =\frac{3}{10} \\
53 \% & =\frac{53}{100} \\
7 \% & =\frac{7}{100}
\end{aligned}
$$

| Decimal to fraction | Fraction to decimal | Fraction to percentage |
| :--- | :--- | :--- |
| $\frac{3}{10}=0.3$ | 0.8 | $=\frac{4}{5}$ |
| $\frac{45}{100}=0.45$ | 0.9 | $=\frac{9}{10}$ |
| $\frac{17}{100}=0.17$ | 0.31 | $=\frac{31}{100}$ |
| $\frac{8}{100}=0.08$ | 0.04 | $=\frac{4}{5}$ |

$$
0.04=\frac{4}{100}
$$

Fraction, Decimal, Percentage Workout
Insert > , = or <

| $\frac{1}{9}$ | $\square<$ | $\frac{1}{8}$ |
| :--- | :--- | :--- |
| $\frac{9}{10}$ | $\square>$ | $\frac{4}{5}$ |
| $\frac{4}{5}$ | $=$ | 0.8 |
| 0.7 |  | $\frac{3}{4}$ |


| $\frac{5}{6}$ | > | $\frac{2}{3}$ | $\frac{9}{10}$ | > | $\frac{9}{11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{5}{6}$ | $>$ | $\frac{5}{7}$ | $\frac{2}{3}$ | > | $\frac{4}{7}$ |
| $\frac{7}{50}$ | = | 0.14 | $\frac{2}{5}$ | $>$ | 25\% |
| 0.07 | < | 60\% | 0.3 | < | 35\% |

## Plot It - A Fraction Game

You need:
1-10 cards (At the back of the pack)
0-1 blank number line

To play:
Shuffle the cards and place them in a deck face down.
Player 1: Pick two cards from anywhere in the deck.
Make a proper fraction. Plot your fraction approximately on the number line.
Replace the cards in the deck and shuffle it.
Player 2: Pick two cards from anywhere in the deck.
Make a proper fraction. Plot your fraction approximately on the number line.
Continue taking turns to make and plot fractions.
To win:
The winner is the first player to plot four points without their opponent's points in between.

For example: After 3 turns for player 1 and 2 turns for player 2 it could look like the diagram below.


Find the missing digits.

$$
\frac{A}{B}<\frac{2}{3}
$$

$A$ and $B$ are digits.
$A$ is an even number, $B$ is an odd number.
Find all the possible solutions. $\frac{2}{5} \quad \frac{2}{7} \quad \frac{4}{7} \quad \frac{2}{9} \quad \frac{4}{9}$
Find the missing numerators and denominators in the following fractions.
The fractions are in order from smallest to largest.
Each letter represents a different number from 1 to 10.

$$
\begin{array}{lllll}
\frac{A}{B} & \frac{C}{D} & \frac{E}{F} & \frac{G}{H} & \frac{I}{J}
\end{array}
$$

## Possible

 Solution$$
\frac{1}{10} \frac{2}{9} \frac{3}{8} \frac{4}{7} \frac{5}{6}
$$

Solve this puzzle in several different ways.

$$
\frac{1}{9} \frac{6}{10} \frac{2}{3} \frac{4}{5} \frac{7}{8}
$$

## Comparing Fractions, Decimal and Percentages Workout

Put a different unit fraction in each square so that the fractions get smaller as you travel right and down across the grid. (Unit fractions have 1 as their numerator.) Possible Solution


Smallest

Fill the grid as described, so that the fractions and decimals get smaller as you travel right and down across the grid.

## Possible Solution



For the following four statements, in each case work out which you would rather and say why.

Have $\frac{2}{3} \mathrm{~kg}, \frac{4}{7} \mathrm{~kg}$ or $\frac{5}{9} \mathrm{~kg}$ of choclate Run $\frac{2}{8} \mathrm{~km}, \frac{3}{7} \mathrm{~km}$ or $\frac{2}{9} \mathrm{~km}$.

Depends on the reason, e.g.
I prefer $\frac{5}{9} \mathrm{~kg}$ because I don't like chocolate
I prefer $\frac{3}{7} \mathrm{~km}$ because I like to run etc

Drink $\frac{4}{9}$ litre, $\frac{1}{3}$ litre or $\frac{2}{5}$ litre of orange juice.

Read $\frac{2}{5}, \frac{1}{3}$ or $37 \%$ of a good book.

On the packet of Colin's favourite biscuits it lists the nutrition information. Sugars 26\%.
Fat 3 g per 12 g biscuit.
Which is there more of, sugars or fat? Sugars

Two shops are having a sale.
Shop A advertises $35 \%$ off.
Shop B advertises $\frac{1}{3}$ off.
Which shop offers the better deal and how do you know? 35\% because $\frac{1}{3}=33 \frac{1}{3} \%$

Colin and Coco sit the same test.
Colin gets $80 \%$.
Coco gets 17 out of 20.
Who had the better test result? Coco

Create your own problems for $30 \%$ compared to $\frac{1}{3}$

Using the digits from today's date create all the numbers from 1-20. You can use any or all of the four operations. You must use all the digits every time.

Example: 03/4/20 (3rd April)

1
1 11

2
3
13
4
$5 \quad 3+4-2+0=5$
15
6
16

7
17
$8 \quad 18$
$9 \quad 3+4+2+0=9$
19

10
20

## 1 - 10 Cards



