Arithmekit Answers

\square
A collection of rich problem solving and
reasoning activities sesingel to deepen
children understand

Make sure we have your direct email address so we can send you any updates or additional free resources.

Email: emma@buzzardpublishing.com

Text © Liz Hopkins and Steve Lomax 2016
The right of Liz Hopkins and Steve Lomax to be identified as authors of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988

The copyright holders authorise ONLY the purchaser of ArithmeKit to make photocopies of it for their own or their classes' immediate use within the teaching context. No other rights are granted without permission in writing from the publishers.

First published in 2016 by Buzzard Publishing

Contents

Activity	Objective
1	Count objects
2	Count in multiples of 2,5 and 10
3	Read and write numbers
4	Count fluently from any number to and across 100
5	Count fluently back from any number including across 100
6	Know teens are ten and 'the rest'
7	Compare numbers
8	Order numbers and position them on a number line
9	Know 1 more than numbers
10	Recall and use addition facts of 6
11	Recall and use addition facts of 7
12	Recall and use addition facts of 8

Activity	Objective
13	Recall and use addition facts of a
14	Recall and use addition facts of 10
15	Use number facts to calculate others
16	Add 10 to a number
17	Know 1 less than numbers
18	Recall and use all the subtraction facts of 6
19	Recall and use all the subtraction facts of 7
20	Recall and use all the subtraction facts of 8
21	Recall and use all the subtraction facts of 9
22	Recall and use all the subtraction facts of 10
23	Subtract a single digit number from a teens number
24	Subtract ten from a number

Teacher notes

Have a look at our short videos on YouTube to get ideas for getting the best out the Arithmekits

 We have provided answers to many of the Arithmekit activities.
Matching Activity 1

You will find colour coded boxes are used to match calculations and answers in the first Matching activity of each section. Where there are missing calculations or answers these have been inserted in red or blue text - sometimes, although a calculation is given there are other possibilities that would work.

What do you notice? Activity 2

Many of these activities are reliant on discussion and it is hoped that teachers will adjust the calculations and extend them to challenge their learners, so solutions are not always provided.

Empty Box Activity 5

Our videos on YouTube are particularly helpful for showing you how to get the best out of this style of activity. Answers are provided but there may be more than one way to solve the challenge.

Colin and Coco

We have not provided solutions for the Convince Colin or Coco activities as a wide-ranging discussion is key to getting the best from these.

Find the matching pairs:

What's missing?
Create your own matching pairs.

Count objects

Grab some counters. Count them into tens frames. How many have you got?
Can you get 3 single-digit numbers?
Colin says, "I've got more
flowers than Coco."
Coco thinks Colin is wrong.

Do you agree with Colin?

Do you agree with Coco?

Convince Colin that there are 13 flowers.

Can you get 3 numbers between 10 and 20?

Can you get 3 numbers between 20 and 30 ?

Coco thinks that when she counts 30 in 5 s there are more than when she counts 30 in 10 s .

Do you agree with Coco?

Using practical resources convince
Colin that he can't just use counting in $5 s$ to count 52 cubes. 5

Put a digit in each box to make the statements true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 at least once each?
Create your own missing digit problem.

Find the matching pairs:

Three
Five
Four
Fifteen
Twelve
Fourteen
Twenty
Thirteen
Two
Eight

What's missing?
Create your own matching pairs.

Write the missing numbers in the boxes:

Four $=$	4
Five $=$	5
Six $=$	6
Seven $=$	7
Eight $=$	8
Nine $=$	9
One =	1
Two =	2
Three $=$	3

Using practical resources convince
Colin that forty and fourteen are NOT the same.

Put a digit in each box to make the statements true:
A number between 3 and $8=5$
eighteen $=18$
Sixteen $=16$
Seven $=7$

Twenty $=$| 2 | 0 |
| :--- | :--- |

A number greater than twenty $=$| 3 | 4 |
| :--- | :--- |

A Number between 15 and $20=1 \square$

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?

Find the matching pairs:

What's missing?
Create your own matching pairs.

Write the missing numbers in the boxes:
$53,54,55,56,57,58$
$33,34,35,56,37,38$
$73,74,75,76,77,78$

What do you notice?

What do you notice?

Find the matching pairs:

$34,33, \square$
$101,100, \square$
$98,97, \square$
$45,44, \square$
$61,60, \square$
$27,26, \square$
$10,9, \square$
$83,82, \square$
$58,57, \square$
$76,75, \square$

96
25
8
32
43
56
99
81
59
74

What's missing?
Create your own matching pairs.

Count back. Write the missing numbers in the boxes:

	the boxes:		
$49,48,47$	46	45	44
19, 18, 17,	16	15	14
79,78,77	76	75	74

 notice?
103, 102, \square

99

What do you notice?

Find the matching pairs:

What's missing? Create your own challenge.

Write the missing digits in the boxes:

What do you notice?

What do you notice?

Coco thinks 12 is twoteen.

Do you agree with Coco?

Colin has 10p - he wants to buy a bouncy ball which costs $14 p$. He thinks he needs $4 p$ more.
Using practical resources convince colin he is right.

Put a digit in each box to make the statements true:

Can you show these as number sentences?
Is there only one way to solve this problem?
How many different digits can you use?
Create your own missing digit problem.

Compare the numbers.

Sort the numbers:

More than 25	Less than 25

Can you sort them all?
Create your own sorting challenge.
Write 'more' or 'less' in the spaces:
27 is \qquad less \qquad than 28

37 is \qquad less \qquad than 39

19 is \qquad more \qquad than 16

16 is \qquad more \qquad than 13

24 is \qquad more \qquad than 18

35 is \qquad more \qquad than 27

43 is \qquad more \qquad than 39

52 is \qquad more \qquad than 46

What do
Put a digit in the box: you notice?
 is more than 36
Can you complete this in 4 different ways?

Colin says, "Numbers with a 9 as the ones digit are bigger than numbers with a 5 as the ones digit."

When is this
true?
Do you agree with Colin?

Using practical resources convince
Coco that 21 and 12 are not equal to each other.

Put a digit in each box to make the statements true:
5 7 is equal to 57
11 is less than
 2 64 is more than 34 43 is equal to 43

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?
Create your own missing digit problem.

Match the numbers in the middle to the empty boxes on the number line:

Create your own matching pairs.

Plot three more numbers on each line:

What do you notice?

Order numbers and position them on a number line

Coco thinks the ones digit gets bigger as you count along the number line.

Never true?

Sometimes

true?

Convince Colin that the number represented by \triangle is larger than the number represented by \hat{F}

Put a digit in each box to make a list of numbers in order from smallest to largest:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?

Create your own missing digit problem.

Match the number on the left to the number
that is 1 more:

18
24
14
5
19
16
21
9
29
42

What's missing?
Create your own matching pairs involving finding 1 more.

Calculate these:

$$
\begin{gathered}
6+1=7 \\
16+1=17 \\
26+1=27 \\
36+1=37 \\
46+1=47 \\
56+1=57 \\
66+1=67 \\
9+1=10 \\
19+1=20 \\
29+1=30 \\
39+1=40 \\
49+1=50 \\
59+1=60 \\
69+1=70
\end{gathered}
$$

What do you notice?

What do you notice?

Using practical resources convince
Coco that 1 more than an odd number is an even number.

Put a digit in each box to make the diagrams true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?
Create your own missing digit problem.

Find the matching pairs to total 6:

3
5
2
4
0
1
6

4
6
2
0
5
3
1

What's missing?
Create your own matching pairs that total 6

Use counters to show a total of 6 in different ways. How could you record them?

What do you notice?

Use the diagrams to write all the number sentences:
$6+0=$
$5+1=$

What do you notice?

Find the matching pairs to total 7:

0
6
3
5
4
2
1
7

What's missing?
Create your own matching pairs that total 7

Use counters to show a total of 7 in different ways. How could you record them?

What do you notice?

Use the diagrams to write all the number sentences:

$$
\begin{aligned}
& 7+0= \\
& 6+1=
\end{aligned}
$$

What do you notice?

Check Coco's work:

$$
\begin{aligned}
& 7+1=8 \\
& 4+3=8 \\
& 6+2=8 \\
& 2+6=8 \\
& 8=8+0 \\
& 0+7=8 \\
& 1+8=8 \\
& 8+4=8 \\
& 8=3+5
\end{aligned}
$$

Can you correct the wrong answers Coco has written?

Create your own list of calculations using the facts of 8

Get 8 cubes, 4 in one colour and 4 in another.

Record the number sentence:

Move one cube from one tower to the other.
Record your new number sentence:

What do

you notice?

Continue moving cubes and recording the new number sentences.

What do
you notice?

Coco thinks that you cannot add two odd numbers to make 8

Sometimes
true?

Using practical resources convince Colin that there are more ways to make 8 than there are to make 7

Put a digit in each box to make these all true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7$ and 8 once each?

Create your own missing digit problem.

Find the matching pairs to total 9:

8
3
0
1
2
9
6
7
5
4

5
9
1
2
4
0
7
3
6
8

What's missing?
Create your own matching pairs that total 9

Use counters to show a total of 9 in different ways. How could you record them?

Use the diagrams to write all the number sentences:
$9+0=$
$8+1=$

What do you notice?

Colin says, "There are 9 ways to make 9 "

Prove it using resources.

Using practical resources convince
Coco that if $5+5=10$ then $5+4=9$

Put a digit in each box to make the diagrams true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?
Create your own missing digit problem.

Find the matching pairs to total 10:

What's missing?
Create your own matching pairs that total 10

Get 10 cubes, 5 in one colour and 5 in another.

Record the number sentence:

Move one cube from one tower to the other.
Record your new number sentence:

What do you notice?

Continue moving cubes and recording the new number sentences.

What do you notice?

Find the matching pairs:

What's missing?
Create your own matching pairs using number facts.

Calculate these:

$$
\begin{array}{lll}
3+3=6 & 5+5=10 & 4+4=8 \\
3+4=7 & 5+6=11 & 4+5=9
\end{array}
$$

What do you notice?
$6+4=10 \quad 7+3=10 \quad 8+2=10$
$6+5=11$

$$
7+4=11
$$

$$
8+3=11
$$

What do you notice?
$10-4=6 \quad 10-7=3 \quad 10-8=2$
$11-4=7 \quad 11-7=4 \quad 11-8=3$

What do you notice?

Coco thinks that if he adds a number to 5 , the answer will be bigger than adding a number to 4

Always true?
Sometimes
true?

Never true?

Using practical resources convince
Colin that if we know

$$
10+10=20
$$

then we can use it to calculate $10+9=\$$

Put a digit in each box to make the statements true:

Is there only one way to solve this problem? Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?

Create your own missing digit problem.

Add ten to the number on the left and match to the answer:

12
7
11
2
9
10
60
28
45
36

What's missing?
Create your own matching pairs involving adding ten.

Calculate these:
$6+10=16$
$16+10=26$
$26+10=36$
$36+10=46$
$46+10=56$
$56+10=66$
What do you notice?

What do you notice?

Colin says, "When you add 10 to a number the ones digit stays the same."

Always true? Never true?

Sometimes
true?

Using practical resources convince Coco that $35+10$ is not 36

Put a digit in each box to make the statements true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$ and 9 once each?
create your own missing digit problem.

Match the number on the left to the number
that is 1 less:

15	
10	19
40	
6	
21	
20	
19	
17	
25	
13	
	18
	39
	5

What's missing?
Create your own matching pairs involving finding 1 less.

Write the missing numbers in the boxes:
One less than 7 is 6
One less than 17 is

One less than 27 is 26

One less than 37 is

One less than 47 is
46
What do you notice?
One less than 10 is
 One less than 20 is 19

One less than 30 is One less than 40 is One less than 50 is

Coco thinks that one less than an odd number is odd.

Always true?
Sometimes
true?

Never true?

Using practical resources convince Colin that one less than 20 is 19

Put a digit in each box to make the statements true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?
Create your own missing digit problem.

Find the matching pairs:

$6-5$
$6-1$
$6-3$
$6-0$
$6-2$
$6-4$
$6-6$

What's missing?
Create your own matching pairs involving subtraction facts for 6

Start with 6 cubes.

Snap some off.
How many are left?
How could you record all the possibilities?

Start	Snap	Left
6	0	6
6	1	
6		
$6-0=6$		
$6-1=$		
$6-$		

Using practical resources convince coco that if you start with 6 cubes and subtract different amounts, then you can end up with 7 different answers.

Put a digit in each box to make the statements true:

$5=6-1$

$6-5=1$

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5$ and 6 once each?
Create your own missing digit problem.

Find the matching pairs:

$7-7$
$7-5$
$7-6$
$7-0$
$7-1$
$7-3$
$7-2$
$7-4$

2
4
1
3
6
7
5
0

What's missing?
Create your own matching pairs involving subtraction facts for 7

Start with 7 counters. Take some away. How many different possibilities are there? How could you record them?

What do
you notice?

What do you notice?

Coco has 7 cars and gives some to Colin. Coco thinks they have the same number of cars each.

Do you agree with Coco?

Coco says, "I have 7 sweets and I ate 4 of them. Now I have 3 left."

Using practical resources convince Colin that Coco is right.

Put a digit in each box to make the statements true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6$ and 7 once each?
Create your own missing digit problem.

Find the matching pairs:

What's missing?
Create your own matching pairs involving subtraction facts of 8

Start with 8 cubes.

Snap some off.
How many are left?
How could you record all the possibilities?

Start	Snap	Left
8	0	8
8	1	
8		$8-0=8$
8		$8-1=$

Find the matching pairs:

$9-2$
$9-6$
$9-1$
$9-4$
$9-5$
$9-8$
$9-3$
$9-9$
$9-0$
$9-7$

6
3
4
9
5
0
8
1
2
7

What's missing?
Create your own matching pairs involving subtraction facts for 9

Start with 9 counters. Take some away. How many different possibilities are there? How could you record them?

Use the diagrams to write all the number sentences:
$9-0=9$
$9-1=$

What do
you notice?

What do
you notice?

Coco thinks whichever number you subtract from 9, you end up with a smaller number.

Always true?

Never true?

Using practical resources convince
Colin that there are ten numbers you can subtract from nine.

Put a digit in each box to make the statements true:

$$
\begin{aligned}
& 9-8=\square \\
& 9-9=0 \\
& 9-4=5 \\
& 9=9-0
\end{aligned}
$$

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?

Create your own missing digit problem.

Coco had 10 cubes and she hid some under her wing. She thinks she can still see an odd number of cubes.

Is this always true?

When could coco be right?

Colin has 10 sweets.
Using practical resources convince Colin that if Coco took 5 of his sweets, he will still have 5 left.

Put a digit in each box to make the statements true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$, and 9 once each?

Create your own missing digit problem.

Find the matching pairs:

8	13-4
12	18-6
10	18-2
6	15-5
16	14-8
8	18-9
9	15-7
16	19-3
9	17-9
10	14-4

What's missing?
Create your own matching pairs involving
subtraction of a single digit number from a teens
number.

Calculate these:

$15-1=14$	$15-6=9$
$15-2=13$	$15-7=8$
$15-3=12$	$15-8=7$
$15-4=11$	$15-9=6$
$15-5=10$	

What do you notice?

Now try starting with 16

What do
you notice?

Put a digit in each box to make the statements true:

Is there only one way to solve this problem?
Can you do it using the digits $0,1,2,3,4,5,6,7,8$ and 9 once each?
Create your own missing digit problem.

Subtract ten from the number on the
left and match to the answer:

12
31
30
21
33
19
22
24
50
42

32
12
40
9
23
2
20
11
14
21

What's missing?
Create your own matching pairs.

Calculate these:

$$
\begin{aligned}
& 85-10=75 \\
& 75-10=65 \\
& 65-10=55 \\
& 55-10=45 \\
& 72-10=62 \\
& 62-10=52 \\
& 52-10=42 \\
& 42-10=32 \\
& 12-10=2
\end{aligned}
$$

What do you notice?

What do you notice?

Coco thinks that when you subtract 10 from a number the ones digit does not change.

Is this always
true?
Do you agree with Coco?

Using practical resources convince Colin that if you subtract 10 from a teens number you always have a single digit number.

Put a digit in each box to make the statements true:

$$
\begin{aligned}
& 22-10=12 \\
& \square 0-10=60 \\
& 74-10=44 \\
& 10-10=0 \\
& 31-10=21 \\
& 78-10=6 \square \\
& 19-10=9
\end{aligned}
$$

Is there only one way to solve this problem? Can you do it using the digits $0,1,2,3,4,5,6,7$, 8 , and 9 once each?
Create your own missing digit problem.

